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Differential Equations

A differential equation (DE) may be defined as
an equation involving one or more derivatives
of an unknown dependent variable or several
variables with respect to one or more
independent variable or variables.



Linear DE versus Non-Linear DE

A linear differential equation is one in which the
dependent variable and its derivatives with
respect to the independent variable are of the
first degree and all multiplicative factors are
either constants or functions of the independent
variable. An example follows.
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Two Examples of Non-Linear Differential
Equations




Ordinary DE versus Partial DE

The preceding equations have been ordinary
types since the dependent variable was a
function of only one independent variable. An
example of a partial differential equation
follows.
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Continuous-Time versus Discrete-Time

The preceding definitions relate to continuous-
time or "analog” systems. However, the same
forms may be adapted to discrete-time or
"digital” systems. In such cases, the equations
are generally known as difference equations.
Most numerical methods involve approximating
differential equations as difference equations.



Boundary Conditions or
Initial Conditions

The solution of an Nth order DE usually
involves N arbitrary constants. These constants
are determined from the boundary conditions.
When these conditions are specified as the
initial value of the function and the first N-1
derivatives, they are called initial conditions.



Example 9-1. Classify the following DE in
several wayS'

, d? d
28 Y ot 5y _e
dt? dt
The DE is linear since none of the coefficients
are functions of y and there are no higher
degree terms in y or its derivatives.

The DE is an ordinary type since y is a function
only of t.
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Constant Coefficient Linear Ordinary
Differential Equation (CCLODE)

mogtm™ Mt g™t dt



Example 9-2. Classify the DE below.

4 3 2
de'Sdg/:?dg/:de

dt* = dt dt dt

-4y = cos5t +t°
This DE is a CCLODE type.

It is a 4th order DE.
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Simple Integrable Forms
dy
dt”

D, T (t)

In theory, this equation may be solved by
integrating both sides k times. It may be
convenient to introduce new variables so that
only first derivative forms need be integrated

at each step.
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Example 9-3. An object is dropped from a
height h at t = 0. Determine velocity v
and displacement vy.

N _ 4 dv = gdt
dt

V:gt_l_Cl C]_:O
v = gt
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Example 9-3. Continuation.

(;i/:gt dy = gtdt
y=%gt2+C2 C, =0
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Example 9-4. Consider situation below and
solve for velocity and displacement in both x

and y directions.
y
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Example 9-4. Continuation.
v, (0) =v,sIn &
dv, _ g
dt

V, = —gt+C, C, =v,SIn@

vV, =—gt+vVv,sin@
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Example 9-4. Continuation.

y(0) =0
Eh/ =V, =—gt+v,sIiné
Yy = —% gt + (v, sin Ot + C,
C,=0

y = ; gt + (v, sin O)t
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Example 9-4. Continuation.
v, (0) =v,cosé
dv, 0
dt

v, =C;, C,=v,cosd&

V, =V, COS{&
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Example 9-4. Continuation.
X(0) =0

ax _ V, =V, COS{&
dt
X =(V,coso)t+C,

C,=0

X = (V, cos o)t
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Constant Coefficient Linear Ordinary
Differential Equations (CCLODE)

dmy dm—ly dy
b b o Fb,y = T (t
m dtm m—1 dtm—l bl dt Oy ()
y — yh + yp

The general solution consists of a
homogeneous solution plus a particular
solution. The homogeneous solution is also
called the complementary solution.
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Homogeneous Equation

Todt™
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Homogeneous Solution

y = Ce®
dy

—Z = pCe*™
at "

2

c(ljtgl - pce”
d™y
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Characteristic Equation

Substitute the form on the previous slide in the
DE and cancel the common exponential factor.
The result is the characteristic equation shown
below.

b p"+b_ . p" " +...+bp+b, =0
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Homogeneous Solution Form

The m roots of the characteristic equation are
determined, and the form of the homogeneous
solution for non-repeated roots is shown below.

Note that if f(t) = 0, this result is the complete
solution.

y, =C,e™ +C, e +...+C_eP
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Particular Solution

The particular solution depends on the form of

f(t). Assuming non-repeated roots, the table
below shows the forms involved.

Form of f (1) Form assumed for y
K A

Kt At + A,

Kt? At? + At + A

K, coswt and/or K, sin wt A sin ot + A, cos wt

—at —ot
Ke Ae
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Combining Particular and Homogeneous
Solutions

1. The form of the particular solution is
substituted in the DE and its constants are
determined.

2. The homogeneous and particular solutions
are combined and the arbitrary constants
from homogeneous solution are determined
from boundary or initial conditions.

25



Example 9-5. Solve DE given below.

dy
-2y =0 0O)=10
ot y y(O)
p+2=0 p=—2
y =Ce 10=Ce ° =C

y =10e
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Example 9-6. Solve DE given below.

céli/ -2y =12 y(0) =10 vy, =Ce™~

y, = A 0+2A=12 A=06
Yo =6 Y=VY,+Y,=Ce ™ +6
10=Ce °+6=C +6 C—4

y=4e ' +6
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Example 9-7. Solve DE given below.

((Zzlli/ -2y =12sin 4t y(0) =10

Yh = Ce ™

Y, = A SsIin4t + A, cos4t

dy,
dt

=4A cos4t —4 A, sin 4t
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Example 9-7. Continuation.

4A cos4dt —4A,sindt+2( A sindt+ A, cos4t) =12sin 4t

(4A +2A,)cosdt+(2A —4A,)sin4t =12sin 4t

4A +2A, =0
2A —4A =12

A =12 A, =-—2.4
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Example 9-7. Continuation.
Y, =1.2sIn4t —2.4cos 4t

y =Ce “' 4+1.2sin 4t — 2.4 cos 4t

10=Ce ° +1.2sin(0) —2.4cos(0) =C +0—2.4(0)
C =124

y =12.4e " +1.2sin 4t — 2.4 cos 4t
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Example 9-8. Solve DE given below.

d? d

dtgl | Bdi/ F2y =0

y(0O) =10 and y'(0) =0
p°+3p+2=0 p,=—1land p, =—2

21

y=Ce " '+C, e

ay _ —C,e " —-2C e
dt
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Example 9-8. Continuation.

10=C, +C,
0=-C, —2C,
C, = 20 C, =10

y =20e ' —10e -
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Example 9-9. Solve DE given below.

2
Y 3, 2y =24 Y(O)=10andy’'(0) =0

dt”? dt
Yh = Cle_t + Cze‘Zt Yo = A

O+0+2A =24 A=12
y=Ce ' +Ce " +12
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Example 9-9. Continuation.
10=C, +C, +12
0=-C, —2C,
C,=-—4 C, =2

—2t

y =—4e ' +2e

+12
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Some General Properties of Systems
Described by CCLODEs

homogeneous solution < natural response

particular solution < forced response
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Stability

A system is said to be stable if its natural
response approaches zero as the time
increases without limit. If this condition is met,
the system will be stable for any finite forcing
response. For a stable system, the terms below

are often used. _
natural response < transient response

forced response <= steady-state response
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Classification of Roots of the
Characteristic Equation

1. first-order and real

2. first-order and complex (including purely
imaginary)

3. multiple-order and real

4. multiple-order and complex (including
purely imaginary)
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Example 9-10. Investigate properties of
DE below.

2
c 3/ :10dy 16y =80
dt dt

2p°+10p+16=0 p,=—landp,=-4

2

Y, :Cle—t +C2e‘4t Y, = A =5

y=Ce'+C,e ™ +5

38



Example 9-10. Continuation.

The system is stable since both of the terms in

the homogeneous solution approach zero as
time Increases.

Since the system is stable, the natural
response is a transient response, and the
forced response is a steady-state response.
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Second-0Order Systems

d®y dy
b - b, b,y = f(t
o o y (t)

b,p?+bp+b, =0

There are three cases: (1)roots are real and

different, (2) roots are real and equal, and (3)

roots are complex (including purely
imaginary).
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Three Forms for Stable Systems
y, =C,e ™ +C,e ™

Yh = (Co + Clt)e_at

—at - —ot
Y, =C.,e “ sinawt+C,e “ cos wt
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Relative Damping

1. If the roots are real and unequal, the system is
said to be overdamped.

2. If the roots are real and equal, the system is
said to be critically damped.

3. If the roots are complex, the system is said to
be underdamped.

4. A special case of an underdamped system is
when there is no damping. the system is then
said to be undamped. »



Example 9-11. Solve DE given below.
d’y _dy
- 2 F5y =0
dt? dt Y
y(0O)=0and y'(0) =10

P°+2p+5=0

p11 p2 — _1i 2i

y=Ce 'sin2t+C_e 'cos2t
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Example 9-11. Continuation.

2_1’ =2C.,e 'cos2t —C,e 'sin 2t

—2C_e 'sin2t —C_e ' cos 2t
0=0+C, 10=2C,—-0-0—-C,
C,=0and C, =5
y =5e " sin 2t
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Example 9-12. Solve DE given below."

d°y dy
I 2 I 5 — 20
dt? dt Y

y(0O)=0and y'(0) =10

y, =C,e 'sin2t+C_ e ' cos2t
y,=A=4

y=Ce 'sin2t+C_e ‘cos2t+4
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Example 9-12. Continuation.

ay _ 2C.e "cos2t—C,e 'sin2t
dt
—2C_e 'sin2t —C_e ' cos 2t
0=0+C, +4 10=2C, —-0-0-C,
C,=-4 C, =3
y =3e "'sin2t —4e " cos 2t + 4
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Chapter 11
Solution of Differential Equations with
MATLAB

MATLAB has some powerful features for
solving differential equations of all types. We
will explore some of these features for the
CCLODE forms. The approach here will be that
of the Symbolic Math Toolbox. The result will
be the form of the function and it may be
readily plotted with MATLAB.
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Symbolic Differential Equation Terms

y
dy
dt
d°y

dt?
d"y

dt"

Y

Dy

D2y

Dny
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Representative CCLODE Form

d* d :
dtgl -, di/ -Fb,y = Asin at

y(0)=C, andy'(0)=C,

b2

>> y = dsolve('b2*D2y+b1*D1y+b0*y=A*sin(a*t)’,
'y(0)=C1", "Dy(0)=C2’)

>> ezplot(y, [t1 t2])
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Example 11-1. Solve DE below with
MATLAB.

Y oy —12 y(0) =10
dt
>> vy = dsolve('Dy + 2*y = 12", 'y(0)=10")

y s
6+4*exp(-2*t)

>> ezplot(y, [0 3])
>> axis([0 3 0 10])
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Figure 11-1. Solution of Example 11-1 based on dsolve and ezplot.
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Example 11-2. Solve DE below with
MATLAB.

(cjjli/ -2y =12sin4t  y(0) =10
>> y = dsolve('Dy + 2*y = 12*sin(4*t)’,
y(0)=10")
y —
-12/5*cos(4*t)+6/5*sin(4*t)+62/5*exp(-2*t)

>> ezplot(y, [0 8])
>> axis([0 8 -3 10])
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Figure 11-2. Solution of Example 11-2 based on dsolve and ezplot.
1':' | | | | | | |
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Example 11-3. Solve DE below with

MATLAB. 2
Y  3Y oy _24
dt dt
y(0) =10 y'(0)=0

>> vy = dsolve('D2y + 3*Dy + 2*y = 24’,
y(0)=10°, 'Dy(0)=0")

y —

12+2*exp(-2*t)-4*exp(-t)

>> ezplot(y, [0 6])

o4



12
11.5
11.6
11.4
11.2

171
10.5
10.6
10.4
10.2

10

Figure 11-3. Solution of Example 11-3 based on dsolve and ezplot.
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Example 11-4. Solve DE below with
MATLAB. 2
d 2/ | Zdy oy = 20
dt dt
y(0)=0 Yy'(0)=10

>> y = dsolve('D2y + 2*Dy + 5*y = 20/,
y(0) = 0, 'Dy(0) = 10)

y —

4+ 3*exp(-t)*sin(2*t)-4*exp(-t)*cos(2*t)

>>ezplot(y, [0 5]}

o6



Figure 11-4. Solution of Example 11-4 based on dsolve and ezplot.
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Symbolic Laplace Transform

Establish t and s as symbolic variables.
>> Syms t s

The time function f is then formed and the
Laplace transform command is

>> F = |aplace(f)

Some useful simplifications are
>> pretty(F)

>> simplify(F)
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Symbolic Inverse Laplace Transform

Establish t and s as symbolic variables.
>> Syms t s

The Laplace function F is then formed and the
inverse Laplace transform command is

>> f = ilaplace(F)

The simplification operations may also be useful
for inverse transforms.
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Example 11-5. Determine the Laplace
transform of f(t)=5t with MATLAB.

>>Syms t s
>> f = 5%t
f =
5*t

>> F = |laplace(f)
F =
5/sN2
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Example 11-6. Determine the Laplace
transform of the function below using
MATLAB.

v(t) =3e ' sin5t +4e ' cos 5t

>>symsts
>> v = 3*exp(-2*t)*sin(5*t)
+ 4*exp(-2*t)*cos(5*t)
V =
3*exp(-2*t)*sin(5*t)+4*exp(-2*t)*cos(5*t)
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Example 11-6. Continuation.

>> \ = |laplace(v)
V —
15/((s+2)7M2+25)+4*(s+2)/((s+2)"N2+25)

>> \/=simplify(V)
\V =
(23+4*s)/(sN2+4*s+29)
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Example 11-7. Determine the inverse
transform of the function below using
MATLAB.

- (s) — 100(s + 3)

(s+1)(s+2)(s° +2s+5)

>> Syms t s

>> F=100*(s+3)/((s+1)*(s+2)*(sN2+2*s+5))
F =
(100*s+300)/(s+1)/(s+2)/(sN2+2*s+5)
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Example 11-7. Continuation.

>> f = jlaplace(F)

f =
50*exp(-t)-20*exp(-2*t)-30*exp(-t)*cos(2*t)-10*exp(-
t)*sin(2*t)

>> pretty(f)

50 exp(-t) - 20 exp(-2 t) - 30 exp(-t) cos(2 t) - 10
exp(-t) sin(2 t)
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Example 11-8. Determine the inverse
transform of the function below using
MATLAB.

Y (s) 10 48

s+2  (s+2)(s°+16)

>> Syms t S

>>Y =10/(s+2) + 48/((s+2)*(sN2+16))
Y —

10/(s+2)+48/(s+2)/(s™2+16)
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Example 11-8. Continuation.

>> vy = ilaplace(Y)

y —

62/5*exp(-2*t)-
12/5*cos(167™(1/2)*t)+3/10*167(1/2)*sin(16”(1/2)*t
)

>> y=simplify(y)
y =
62/5*exp(-2*t)-12/5*cos(4*t)+6/5*sin(4*t)

66



Numerical Differentiation

MATLAB Functions for Numerical Differentiation:

diff()
polyder()

MATLAB is a numerical language and do not perform symbolic

mathematics
... well, that is not entirely true because there is “Symbolic

Toolbox” available for MATLAB.



x = —h:1:5;

s Define the function y(x)

- . : Exact Solution
v = x."3 4+ 2%*x.72 — x + 3; Numerical Solution

|
% Plot the function vy (x) | .

plot (x, V) dydx i i

title('y'") 42 54

_ _ | 22 31

% Find nummerical solution to dy/dx 8 14

dydx num = diff(y)./diff(x); 0 3

-2 -2

dydx exact = 3*x."2 + 4.*x -1; 2 -1

12 6

dydx = [[dydx num, NaN]', dydx exact'] 28 19

50 38

% Plot nummerical vs analytical solution to dy/dx N?ﬁ gi
d

figure (2)

plot (x, [dydx num, NaN], x, dydx exact)
title("'dy/dx")

legend ('numerical solution', 'analytical solution')
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y=x34+2x*—x+3

d
= 32 4 4x—1
dx




Differentiation on Polynomials

Find the derivative for the product:
(3x? 4+ 6x + 9)(x?* + 2x)

We will use the polyder(a,b) function.

Another approach is to use define is to first use the conv(a,b)
function to find the total polynomial, and then use polyder(p)

function.



We have that
p, =3x*+6x+9
and
p, = x% + 2x

The total polynomial becomes then:
p=p; Py, =3x*+12x3 + 21x% + 18x
As expected, the results are the same for the 2 methods used above:

dp d(3x*+12x° + 21x* + 18x)
dx ax

= 12x3 + 36x% 4+ 42x + 18



O

5 Define the polynomials
pl = [3 6 9];
2 = [1 2 0]; %Note!

% Method 1
polyder (pl, p2)

% Method 2
p = conv(pl,p2) -

"
-
-

Y arns =

12

36

42

21

42

18

18

18



